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Abshact In a previous work we derived a remarkable local identity which allows writing 
of any Lagrangian as a ‘linear combination’ of its field equations plus a divergence. Using 
this identity we were able to provide an alternative proof of the fact that a (higher-order) 
Lagrangian has identically vanishing field equations if and only if it is locally a divergence. 
The aim ofthis work is to investigate how far we can go in globalizing the previous results 
for (higher-order) Lagrangians. In the case of vector or affine bundles the previous results 
admit global generalizations in a natural way. The true obstacle is the topological structure 
of the fibre bundle (bath of the basis manifold and of the fibres). As a general rule, it turns 
out that we can globalize in a non-unique way the previous results when the fibre bundle 
admits global sections and, moreover, it is contractible by fibred morphisms to one of its 
global sections. Uniqueness is lost at the level of affine bundles, and for ’non-triviaf‘ 
topologies we lose the globality of the result. 

Introduction 

It is well known that a Lagrangian density of the form 3= d , F ,  where d, is the total 
(or formal) derivative with respect to x’, and gEr is an arbitrary function of the fields 
and their derivatives up to an arbitrary order, yields identically vanishing field equations 
&3= 0. This can be verified just by direct replacement of 3= dpP’  into &,3. Accord- 
ingly, two Lagrangians differing by a divergence yield the same field equations; they 
are called d-equivaknt, while the Lagrangian formalism is said to be d-invariant. The 
previous fact involves a su5cient condition for a Lagrangian to have identically 
vanishing field equations. An important problem is to show that the condition is also 
locally necessary, i.e. to show that S . 2 =  0, implies 33 d , P .  

The necessary condition can be easily obtained in classical mechanics, as well as 
for its higher-order generalizations, and also for first-order field theory [l]. A classical 
constructive method of proof, which can be found in [ 11, consists in explicitly writing 
the total derivatives involved in the field equations. The terms containing derivatives 
of each different order must be independently zero. This means that the factors 
multiplying them must be zero, giving differential conditions which might be integrated 
to obtain the explicit structure of the Lagrangian. 

The problem, however, complicates very much for orders larger than one if there 
are several independent variables (see [2]). An implicit proof that 8 . 2 ~  0 is equivalent 
to the Lagrangian being a divergence was given by b p k a  [3]. For higher-order 

8 Permanent address: Postfach 132, 5024 Salzburg, Austria. 
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Lagrangians the generalization of the constructive method of proof of [I] becomes 
practically unmanageable. However, a new constructive method must be looked for, 
since, in view of applications to theoretical physics, it is still interesting to derive a 
method for explicitly writing as a divergence a given Lagrangian having identically 
vanishing field equations. 

Inspired by some previous results by Vainberg [4], Atherton and Homy [S] and 
Engels [6] ,  in the framework of bigher-order field theory we derived [7] a local identity 
which allows any Lagrangian to be written locally as a ‘linear combination’ of its field 
equations plus a divergence. The identity found in [7] was applied to solve two 
problems: h s t ,  to show that the necessary and sufficient condition for identically 
vanishing field equations is that the Lagrangian is locally a divergence; second, to 
study the possibility of removing from field theory the ambiguities related to the 
non-invariance of the energy-momentum tensor under the addition of a divergence to 
the Lagrangian. 

Here we look for the global extension of the identity we found in [7] and we discuss 
a generalization to the cases of non-trivial fibre topology. The previous extension is 
important not only from the mathematical viewpoint, but also in view of its applications 
to theoretical physics. 

This paper is organized as follows. Section 1 is essentially a review of previous 
results and fixes the notation (fibred manifolds and prolongations in section 1.1, 
calculus of variations in section 1.2 and fibred homotopy formula in section 1.3). In 
section 2 we consider the globalization of the previous formalism. In section 2.1 we 
consider the case of vector bundles and in section 2.1.1 we show explicitly how to 
calculate the relevant objects in a covariant way by means of connections. The case 
of affine bundles is considered in section 2.2, while in section 2.2.1 we apply the 
previous results to electromagnetic fields on curved manifolds. 

1. Preliminaries 

Since the fields describing our physical systems are assumed to be (local) sections of 
a fibred manifoldf ‘is: B -f M, over an orientable basis manifold$ M, we shall start by 
recalling the fundamentals of calculus of variations in fibred manifolds, and by fixing 
the notation. 

1.1.  Fibred manifolds and prolongations 

As is usual in this kind of problem, we shall work only with fibred coordinates (x”. y ” )  
over B, where = 1,. . . , m =dim(M) and Q = 1,. . . , n =dim(B)-dim(M). Without 
any loss of generality, we may consider only fibred coordinates (xp, y o )  ranging in 
domains 0 of the type 0 = U x V ,  where U G R” and V s  R” are open subsets. With 
such coordinate systems, a (local) section 4 : M -f B will be represented by a map 
6 : (x”) ++ (x”, 6%)). 

t In [7] we assumed that the fibred manifold B was a vector bundle over M. Here we do not make any 
restriction an B (we do not even ask B to be a bundle over M). 
t All h e  manifolds we use in the following will be assumed to be smooth (i.e. CY, connected. locally 
compact and paracompact. All the mappings will be assumed to be smooth. 
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For any positive integer k, the kth-order prolongation of the fibred manifold 
a: B + M, which is a fibred manifold vh : JhB + M, and the kth-order prolongation of 
each (local) section 6 : M + B, which is a (local) section j h + :  M + J‘B, are defined in 
a canonical way. On JhB we have canonical fibred coordinates obtained by taking 
prolongations of fibred coordinates of B, which are the only coordinates we shall 
use in JhB. The kth-order prolongation of a fibred coordinate system (x”, y ” ) ,  with 
domain Cl ,  will be denoted by (x”, yo, yz,, . . . , yz ,... ,J, and its domain by ah. Using 
canonical fibred coordinates in JhB, the kth-order prolongation jh+  : M + JhB of 
a (local) section 4 : M - B  will be represented by the map 
j k + : ( x ” )  H (x”, +“(x), J,,+“(x), . . . , J, ,... p k + ’ ( x ) ) ,  where we use the standard 
notation 

for partial derivatives of the functions +“(x). 

Remark. In order to avoid unnecessary complications, we shall assume that for 2 < s < k 
all the ‘coordinates’ y z , .  .”, are symmetric in the indices (pl . . . p,), with 1 < p, < m for 
1 s i < s. Such a convention involves the explicit symmetrization of certain indexed 
objects, but leads to formulae which are simpler than those obtained using true 
coordinates (e.g. multi-indices or increasing sequences of indices pl s p2 s. . . s ps). 

Letf: Oh + R be a real-valued function defined on the domain of a canonical fibred 
chart (x”, yo, y;!, . . . ,yzl,,,Fk) of JkB. The formal derivative dJ:Cl,+,+R is then 
defined by 

h 

dJ= JJ+YEJJ+ C ~ ~ , . , . ~ ~ ~ J 2 ~ ~ ~ ’ ~ f  (1) 
3 - 1  

where the partial derivatives ad 

and by the requirement that J:l...”*f be symmetric in (pl . . . p.) for 2 s  s 5 k 
For higher-order formal derivatives will shall use the same notation we used for 

higher-order partial derivatives, i.e. dpb~sf=d.+l  . . . d,f: Recall that d”l..,”3f is sym- 
metric in the indices (pl . . . ps).  

1.2. Calculus of variations 

We assume that the dynamics of our physical system is described by a kth-order 
Lagrangian density 

atL.. . , J 3 ’ ” ” ~ f  are uniquely defined by 
df= a J d x ” +  JJ dy” + J2dy ;  + . . . + J~l’.’”kfdy~,,.,se 

z= -%”, Y z ,  ‘ . . 3 $,...”J (2) 
on a fibred manifold B. The first-variation formula for 3 reads then as follows: 
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The two addenda of the right-hand side of the first variation formula (3)  are always 
globally well defined scalar-densities, independently of the order k of the Lagrangian 
(2). O n  the contrary, the vector-density 

k-1 

s=2  
f”(2) = s :2syn + s y 2 s y : +  c sp”~2sy : , , . . . ”s  

is globally well defined only for orders k s 2 .  However, as was proved in 181, this 
problem can be overcome by simply using a linear connection on the basis manifold 
M. In fact (see [9] and [8] for details), for any linear connection r& on M there 
exists a uniquely defined set of coefficients sZ(2,  r), sY(2, r), . . ,, 6:”t-”+(2, r) 
such that the first variation formula (3) can be rewritten as follows: 

( 5 )  1 h-1 
s2=s.2syn+d,  s:(g,r)sy”+s~”(~,r)sylf+ c s~”l...r(2,rr)sy:,..., [ r=2  

and the vector-density 
k-L 

f ~ ( ~ , e , ) = s ~ ( ~ , r ) s ~ “ + s : ’ ( ~ , r ) s ~ ~ f  s~ . . . s (~ , r ) sy~~ . , . ,  
s = 2  

is globally well defined for any order k (see [9] for the explicit expression at order k = 3). 

Remarks. The coefficients 8:”+’(2, r) are symmetric in ( v, . . . v,) for 2 s S k - 1. 
The highest one 

ijy,.-%,(g, r) I ay,...%-,(z) - a y . . - % ,  (2) 
is the only one which is symmetric in all the contravariant indices, is always independent 
of the connection T& for any order k, and is tensorial. 

The vector-densities f”(2, r) and f”(2, r’) corresponding to two connections r 
and r’ differ by the formal divergence dvh”’(2,r’,r’) of a globally well defined 
skew-symmetric tensor-density h””(2, r, Y). 

At order k s 2  we h a v e f p ( 2 , r ) - r ( 2 ) .  

1.3. Fibred homotopy formtila 

It is well known that field equations S.2=0 are invariant under the addition of a 
divergence to the Lagrangian. This property is called d-invariance, and in order to 
preserve d-invariance in field theory one has to select a representative for the family 
of d-equivalent Lagrangians 171. Let us recall how the basic local identity for a kth-order 
Lagrangian 3’ is obtained. 

We assume that the domain R of the fibred coordinate system admits a fihred 
homotopy between the identity and one of its sections 6;  i.e. there is a map C : [0,1] x 
Cl+Cl of the type (7, x”, ye)* ( x p ,  ~ “ ( 7 ,  x, y ) )  and such that 

C(1, x”, f )  = (x”, y “ )  and C(0, x+, y ” )  (x”, +“(x)). 

If this is not true, we can assume that each fibre of the domain R is contractible to a 
point and consider a smaller domain R where the property holds. For any positive 
integer k, the kth-order prolongation of C is the fibred homotopy C‘ :[O, I] x Rk +ak 
defined by 

(7 ,  x”, Y”, YE,. . . ,$ ,... p k )  * b”, ~ “ ( 7 ,  x,Y) ,  dpca(7, x , y ) ,  . . . , d, ,... pkco(7,  x, y ) ) .  
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It is clear from its definition that Ck is a homotopy between the identity of Cl, and 
the section jk+; that is,, we have 

0 0  C(1, x* .y0 ,y; ,  . . . ,.Y; ,_.. d= (r"> Y > YPI. , . , Y ;  ,... $,J 
and 

C(0, x',Y',Y;, . . . , Y E ~ . . . , J =  (x", J,,+"(x), . . . , J~l . . .~ f i4a(x) ) .  
Given a kth-order Lagrangian 2 we consider the one-parameter family 3T of 

Lagrangians defined (over Cl,) by setting 

3,(xW,ya,y;,.. ., U:, ...,, )==%x*, c"(T,Sy),d,Ca(T,X,4'), . . . , d r  ,... l r k C ( L ( T , x , ~ ' ) ) .  

This family is such that 

% ( X " , Y S ,  y;, . . , , Y ;  ,... *J= =%"> Y", Y;, . , . , Y ;  I... "J 
and 

3n(xp, y", y;,  . . .,YE,.. J 5 3(x", +"(x), a,,+"(x), . . . , J+,++'(x)). 

Accordingly, if we now apply the global first-variation formula ( 5 )  to the derivative 
d/dT(3,) of the family and then we integrate over T E [ O ,  13, we obtain the following 
identity: 

3= 30+ds&(3. r) + 2 (6) 

where the vector-density .!?"(3, r) and the scalar-density 9 are defined by 

and 

Although we did not write it explicitly, the quantities 3,,, &(2, r) and 2 depend on 
the choice of the homotopy C. 

Since 30=30(x) is a scalar density on the manifold M, there exists locally a 
vector-density f:(x) such that S0(x) = dfl(x) .  Therefore, we have the local identity 

2= d,%'+ 2 (9) 

where we set F" =f$(x)+@"'2', r). This is the kind of identity we derived in [7] by 
using local fibred homotopies of the type C : (T,  x", y " )  H (x", .ye). We remark that 
the vector-density 9" is defined only up to a divergence, since we may replace the 
vector-density K ( x )  with a vector-density of the form f t ( x )  +a .hT(x ) ,  where h f " ( x )  
is a skew-symmetric tensor density. 

Using the identity (9 )  it is now evident that 8 3 -  0 locally implies 2s d,P', in 
full agreement with the general existence theory (see 121). We stress, however, that 
this method provides a constructive way to find, through equation (7), a vector-density 
$" whose divergence is the given Lagrangian. 
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In order to obtain d-invariant quantities we have to pick up a representative for 
the d-equivalent Lagrangians. Once again, the identity ( 6 )  helps us in this task. In fact, 
as we did in [7], it allows us to select the following representative for the d-equivalent 
Lagrangians 

which vanishes identically when applied to a pure divergence. 

2. Globalization 

The calculations of section 1.3 are of local nature, because they rely on the local fibred 
homotopy C and the corresponding local section 4. We shall here generalize these 
results under the hypothesis that the fibred manifold T : B + M is a vector bundle over 
M, an affine bundle over M or a slightly more general fibred manifold. 

2.1. Vector bundles 

In the case of a vector bundle 7r:B-t M over M, there is a special global section of 
B, the zero section, and a special global homotopy C: [0, I ]  x B -t B, which is induced 
by the vector space structure of the fibres of B, i.e. defined by C : (I, U) H Iu. 

When dealing with vector bundles, we restrict our attention to fibred charts ( x p ,  y") 
coming from local trivializations of the vector bundle E. Accordingly we have domains 
Cl of the type Cl = U x R" where U E R" is an open subset, and transition functions 
which are linear in the Ebre coordinates (y" ) .  The local representations of the special 
global homotopy C:[O, I ] x B + B  in this kind of fibred charts are of the type 
(T,  xu, y") w (x", ry"), and their kth-order prolongations are defined by 

(11) (7, x', Ye, YL.. . , Y L J  - w, ry", ry:, , . . I 4 ,... 'A. 

se, @(2, r) and 2 

2s 2 - 2 o ( x )  -d,,g''(Z, r) = { S . ( 2 7 ) y " )  d ~ .  (12) 

P =fm + .@(% r) 

All the relevant terms appearing in formula (6), i.e. 

are globally well defined, so that there is a preferred d-invariant Lagrangian 

Id 
The only possible source of non-globality in the vector-density 

resides in the vector-density f t ( x ) .  In fact, being &(9, I') global, the vector-density 
9" defined in this way is global if and only if the vector-density f c ( x )  is global. 
Accordingly, it is now easy to prove that a Lagrangian defined on the sections of a 
vector bundle B and having identically vanishing field equations is a global divergence 
if and only if the value of the Lagrangian on the zero section is an exact form. 

The possibility of positively answering this problem depends both on the basis 
manifold M and on the Lagrangian 9. In particular, we have a global W independently 
of the topology of M when the Lagrangian ZQ vanishes, or it is an exact m-form. On 
the other hand, we have a global 5" independently of the Lagrangian 3' when the 
highest cohomology group H,,,(M) vanishes. In any case, when H , ( M )  does not 
vanish there exist always Lagrangians 2 for which no global SGlr can be found. 
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2.1.1. Couariantfirsr variation formula. We shall see here, as an example, the procedure 
for constructing the global vector-density W(2, I') which enters the global first van- 
ation formula (5) (for details and further reference see [9]). 

Covariant derivatives of sections of the vector bundle B can be defined by choosing 
a principal connection A:, on the frame bundle of B, while for defining higher-order 
covariant derivatives we need to choose also a linear connection r& on the basis 
manifold M (for simplicity, we shall assume that the torsion of r& vanishes). Once 
we have fixed the connections A& and r&, higher-order covariant derivatives of a 
section + : M -f B are defined by repeated use of A& and r&. For example. we have 

V,+"=d&"+Ak+b 

V,V,+"=d,C,+"+A~~V,+b-V,4'T;, 

V , V * V ~ + ~  = d,v,v,+' + A;v,v,+* - v,v,+"r;, - v*v&r; 
and so on. We recall that for any positive integer k this defines a one-to-one correspon- 
dence between partial derivatives (x*, +"(x"), 4;,(x"), . . . ,4;p,,pk(x")) and sym- 
metrized covariant derivatives (x", +"(xu) ,  V,,4"(x"), . . . , Vp,...,~+"(x")) of sections 
of the vector bundle B. This one-to-one correspondence depends only on the connec- 
tions A& and r;+ (and not on the particular section + of B): 

( X " , Y Q , Y ~ , , . . . , Y  ~ ~ . . .  ~ ~ ) ~ ( x , , Y * , v , , y ~ , . . . , v ~  ,... .,Ye). (13) 

Let us then consider a kth-order Lagrangian (2), and let us assume that 2' has 
been already expressed in terms of symmetrized covariant derivatives of the fields by 
means of (13): 

Z = Z ~ ( X * , Y ~ , Y ;  ,... ,I,; ,.,, . , ) - ~ e ' ( ~ * , ~ n , v p l ~ ~ ,  .. . ,vp ,... .,ye). (14) 

Then, the first variation formula for 2 can be rewritten as follows: 

where the 'covariant' variational derivatives A a P 9  A Z Y ,  . . . , A : 1 , . + h Y  are recursively 
defined by 
A . F , . P k p =  DZx.-A$Zf AP!.. .@~-BY = DZ]...#k.jZe'-v A"I"'*~-I'Y 

L1 Y O  

... A t Y  = DZ2'- V,,A:"Y A X =  DX-V,AZ2" .  (16) 

Here the partial 'covariant' derivatives D,Y, D X ,  D:2",. . . , D:t..'"k2" are uniquely 
defined by 

d F =  D,2"dx '+DXdya+DfL?dVyn+.  . .+ D:'...""'dV,,,,,,,y' (17) 
and by the requirement that D?..'*.2'' be symmetric in (p ,  . . . p.) for 2 s  se k 

Remark A word of caution is in order here. The Lagrangian 2" is a scalar density of 
weight one, so that, as far as covariant derivatives with respect to r;,, are concerned, 
the partial 'covariant' derivatives D?.-"~2", which are tensorial objects, should be 
treated as if they were tensor-densities of weight one. This must be taken into account 
when covariant derivatives are considered, e.g. 

V,D;2" = d,D;2"- D ~ 2 " A & +  r$,D:Y- r&DzY. 
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The variational derivatives A a Y ,  ArZ',. . . , A:l+*9' depend in a very peculiar 
way on the two connections A;,, and r;,, we used to construct them. More precisely, 
we have: 

A . 9 '  does not depend on A& and r;, since the identity Ao9'=6,,9 holds 

the globally well defined vector density 
independently of the order k of the Lagrangian; 

*-I  
Yp(2") = A~2'6ya+Ahg2'V,6y"+ C [ A ~ . ~ ~ r Y V , . . , , S y " I  

s=z 

does not depend on the connection A& since the identity Y p ( Y ) =  Sp(9,r) 
holds independently of the order k of the Lagrangian (see [SI for the proof). 

Accordingly, the recipe for explicitly calculating the global vector-density S"(9, r) 
is the following. First calculate the vector-density 'Ir"(9') as described above. Then 
substitute in 'u"(Y) all the covariant derivatives V,,.,.,Sy' by means of their expressions 
in terms of y", A;,, r;, and their derivatives. What we are left with at this point is 
exactly the explicit expression of F(2, r). 

2.2. Afine bundles 

The case in which B is an affine bundle is strictly related to the discussion of section 
2.1 for vector bundles. The reason is that any affine bundle m :  B-. M is modelled on 
a vector bundle m : B -+ M, B and B are isomorphic as fibre bundles over M and, 
finally, to each global section of the affine bundle B we associate, in a canonical way, 
a bundle isomorphism between B and B. The bundle isomorphism between B and B 
associated to a global section + : M + B is given by: b c-f b - +( m( b ) ) .  Accordingly, 
the natural choice for global homotopies is to choose a global section + : M + B 
and to construct the global homotopy C:[O, l ] x B + B  by setting C(T,  b ) =  
+ ( m ( b ) ) + r ( b  - + ( d b ) ) ) .  

The only relevant difference with the case of vector bundles, consists in the fact 
that we do not have any longer a preferred choice for the homotopy, because we have 
no preferred global section. At this point, we know that what we said for the case of 
vector bundles applies also to affine bundles, with the following exception: we obtain 
a d-invariant Lagrangian g(9, r, 4) for each global section 4:  M + B. 

As can be easily verified, the d-invariant Lagrangians 2(9, r, 6') and P(2,  r, +") 
corresponding to two different sections differ by a global scalar density having identi- 
cally vanishing field equations. This means that when H , ( M )  does not vanish there 
are a Lagrangian 2 a n d  global sections +'and +", such that the difference 2(9, r, 4') - 
2(2, r, 4") is not a global divergence. 

2.2.1. Example: the electromagneticfield. Here we consider, as an example, the electro- 
magnetic field in an arbitrary manifold M endowed with a Riemannian or pseudo- 
Riemannian metric g,, = g a p ( x ) .  Since the electromagnetic potential A, is a connection 
in a principal U(1)-bundle over M, it is a section of an affine bundle over M which 
is modelled on the vector bundle u( lJOT*M.  Accordingly, we have to apply the 
procedure for affine fields. 

Let us then choose a background electromagnetic potential A,+ = &(x), and let us 
consider the homotopy 

( T ,  xm,  A,) - (x". U)+ T(A, -A , , (xN)  (18) 
to calculate all the necessary integrals. 
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The Lagrangian 2’ is the Maxwell Lagrangian 

2 = -+ fi F,,F*” (19) 

and the global first variation formula for 2 is 

&9= -d,[& F’“]SA,+d,[& F’“SA,] (20) 

where we set as usual g = Idet(g,,)l, F,,. = d,A,; d,A, and F’” = g“pgs”F,p. The 
vector-density 26’’ and the d-invariant Lagrangian 3 corresponding to the background 
field A, are then given by 

= -$( 4 -&) d,[& (F”*+ F“j’)]. (22) 

It can be now easily checked that two background connections pm and 2 give rise 
to two Lagrangians (22) which diEer by a quantity which is a global divergence if and 
only if 

iJa,[fi (p“”+ P’“)](2:-&) 

is a global divergence. This may be true in some special cases, but in general it is false. 

Conclusions 

We have seen that our identity admits a global generalization in the case of vector 
bundles and affine bundles, which cover most cases of physical interest. The methods 
described in this paper can be easily applied to fibre bundles r :  B +  M which admit 
a global section 4 : M + B such that the map 4 0 v : B + B is homotopic to the identity. 
In this case we lose uniqueness of the result, because we have no preferred homotopy. 
Whether we lose the possibility of constructing a global vector-density 9, depends, as 
in the previous cases, on the cohomology group H,,,(M) and also on the Lagrangian 2. 

In the case of fibre bundles with non-trivial topology, uniqueness and globality of 
the result are lost usually. 
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